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Lecture 2
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1 The Potential Outcome Framework

The Potential Outcome Framework is also known as the Neyman-Rubin Potential Outcomes, or the Rubin
Causal Model. In this model, a decision, treatment or intervention is denoted as z € Z. Often, we have
Z ={0,1} where 0 is thought of as the control and 1 the treatment. The potential outcome Y (z) € R
for each z € Z is the outcome we would see if we were to apply treatment z. Each individual unit (such
as a patient in the medical setting) has a collection {Y'(z) : z € Z} of fixed outcomes. Each individual unit
is also characterized by a collection of observed covariates © € X' (such as age, blood pressure and medical
history in the patient example). Taking the frequentist view of probability, we may consider X and Y (z) as
random variables over the population of individual units. Thus, the joint distribution (X,Y (2) : z € Z) over
the population describes a generic unit.

1.1 Some quantities of interest
1. Average Treatment Effect: ATE =E[Y (1) — Y (0)].
2. Conditional Average Treatment Effect: CATE(x) = E[Y(1) — Y(0)|X = z].
3. Average Policy Outcome/Risk: Given poilcy 7 : X — Z, APO(w) = E[Y (7(x))].
If Z ={0,1}, we define Average Policy Effect,

E[Y (n(z)) =Y (1 = 7(2))]

E[E[(27(z) = 1)(Y(1) = Y(0))|X = 2]]
E[(2 (z)*l)CATE( )]
APO(m) —

O(m

APE(r)

(APO 1) + APO(m))

where 71 and 7 are policies that apply treatment 1 and 0 on all units respectively.
4. Best policy: m*(x) = argmin, ¢z E[Y (2)|X = z]
5. Best-in-class policy: nf; = argmin . APO(m)

More to come: LATE, CLATE, SATE, ...

1.2 Causal Inference Setting

Suppose there is a dataset of n i.i.d. draws of units X;, Y;(z). The Central Problem of Causal Inference is
that we only observe the outcomes of treatments administered and never any of the other outcomes. Let
Z be the treatment administered. We only observe Y = Y (Z). So, Y(2),z # Z is not known. We may
view Causal Inference as a missing data problem: X;, Z;,Y;(0),Y;(1) are all the data, but we only observe
Xi, Z;,Y; = Y;(z) with Y;(1 — 2;) dropped or missing.



1.3 Assumptions

The following assumptions are implicit in the above formulation.

1. Consistency: Outcome observed actually corresponds to the hypothetical potential outcome of applying
Z,i.e. indeed Y =Y (Z2).

2. No interference: Outcomes only depend on the treatment applied to the unit, and not on treatments
applied to other units.

3. Single Version of Treatment: Each z corresponds to a single version of treatment. (For instance, if the
drug treatment is Aspirin, then all treatments are of the same brand, dosage etc.)

Assumptions 2 and 3 are together known as the Stable Unit Treatment Value Assumption, or SUTVA.

2 Learning to Decide with Fully Observed Counterfactuals

We first tackle the easy case where we observe Y;(z)Vz € Z. Some examples where this happens:
1. Supervised classification: We observe label L; and Y;(z) = 1(z # L;).

2. Supervised regression: We observe value L; and Y;(z) is some appropriate loss function such as (z— L;)?
or |z — L.

3. Inventory management: We observe demand D; and Y;(z) = Bz — amin(D;, z).

The task is to find the best-in-class policy 7* in the class II C [X — Z]. The true policy risk of a policy 7 is
R(n) = APO(?T)AZ E[Y (w(x))]. So, given the data, we get an empirical policy risk R, (7) = £+ 3" | Vi(m(z;)).
How well does R,,(7) estimate R(m)?

2.1 Naive Approach

Fix 7 and look at |R, (7) — R(m)|.

Lemma 1 (Hoeffding). IfEV =0 for V € [a,b] then Ee'Y < exp(§t*(b— a)?).

Theorem 2 (Hoeflding Inequality). If V; € [a;, b;] are independent random variables for i € [n], then
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Proof. Let S, =3 _.V;. Then Vt >0,
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The first inequality above follows from Markov’s inequality, and the second from Hoeffding’s Lemma. Now
Setting t= W, giVeS
—2¢2

Z?:l(bi —a;)? )

Finally, repeating the above steps for the other side of deviation, taking Union Bound and then plugging in
ne as € gives the desired result. O

P(S, —ES, >¢) <exp (

2.2 Better Approach

How well does R, (7) estimate R(r) over all w € I1?
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