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1 The Potential Outcome Framework

The Potential Outcome Framework is also known as the Neyman-Rubin Potential Outcomes, or the Rubin
Causal Model. In this model, a decision, treatment or intervention is denoted as z ∈ Z. Often, we have
Z = {0, 1} where 0 is thought of as the control and 1 the treatment. The potential outcome Y (z) ∈ R
for each z ∈ Z is the outcome we would see if we were to apply treatment z. Each individual unit (such
as a patient in the medical setting) has a collection {Y (z) : z ∈ Z} of fixed outcomes. Each individual unit
is also characterized by a collection of observed covariates x ∈ X (such as age, blood pressure and medical
history in the patient example). Taking the frequentist view of probability, we may consider X and Y (z) as
random variables over the population of individual units. Thus, the joint distribution (X,Y (z) : z ∈ Z) over
the population describes a generic unit.

1.1 Some quantities of interest

1. Average Treatment Effect: ATE = E[Y (1)− Y (0)].

2. Conditional Average Treatment Effect: CATE(x) = E[Y (1)− Y (0)|X = x].

3. Average Policy Outcome/Risk: Given poilcy π : X 7→ Z, APO(π) = E[Y (π(x))].

If Z = {0, 1}, we define Average Policy Effect,

APE(π) = E[Y (π(x))− Y (1− π(x))]

= E[E[(2π(x)− 1)(Y (1)− Y (0))|X = x]]

= E[(2π(x)− 1)CATE(x)]

= APO(π)− 1

2
(APO(π1) +APO(π0))

where π1 and π0 are policies that apply treatment 1 and 0 on all units respectively.

4. Best policy: π?(x) = argminz∈Z E[Y (z)|X = x]

5. Best-in-class policy: π?Π = argminπ∈ΠAPO(π)

More to come: LATE, CLATE, SATE, . . .

1.2 Causal Inference Setting

Suppose there is a dataset of n i.i.d. draws of units Xi, Yi(z). The Central Problem of Causal Inference is
that we only observe the outcomes of treatments administered and never any of the other outcomes. Let
Z be the treatment administered. We only observe Y = Y (Z). So, Y (z), z 6= Z is not known. We may
view Causal Inference as a missing data problem: Xi, Zi, Yi(0), Yi(1) are all the data, but we only observe
Xi, Zi, Yi = Yi(zi) with Yi(1− zi) dropped or missing.
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1.3 Assumptions

The following assumptions are implicit in the above formulation.

1. Consistency: Outcome observed actually corresponds to the hypothetical potential outcome of applying
Z, i.e. indeed Y = Y (Z).

2. No interference: Outcomes only depend on the treatment applied to the unit, and not on treatments
applied to other units.

3. Single Version of Treatment: Each z corresponds to a single version of treatment. (For instance, if the
drug treatment is Aspirin, then all treatments are of the same brand, dosage etc.)

Assumptions 2 and 3 are together known as the Stable Unit Treatment Value Assumption, or SUTVA.

2 Learning to Decide with Fully Observed Counterfactuals

We first tackle the easy case where we observe Yi(z)∀z ∈ Z. Some examples where this happens:

1. Supervised classification: We observe label Li and Yi(z) = 1(z 6= Li).

2. Supervised regression: We observe value Li and Yi(z) is some appropriate loss function such as (z−Li)2

or |z − Li|.

3. Inventory management: We observe demand Di and Yi(z) = βz − αmin(Di, z).

The task is to find the best-in-class policy π? in the class Π ⊂ [X 7→ Z]. The true policy risk of a policy π is
R(π) = APO(π) = E[Y (π(x))]. So, given the data, we get an empirical policy risk R̂n(π) = 1

n

∑n
i=1 Yi(π(xi)).

How well does R̂n(π) estimate R(π)?

2.1 Naive Approach

Fix π and look at |R̂n(π)−R(π)|.

Lemma 1 (Hoeffding). If EV = 0 for V ∈ [a, b] then EetV ≤ exp( 1
8 t

2(b− a)2).

Theorem 2 (Hoeffding Inequality). If Vi ∈ [ai, bi] are independent random variables for i ∈ [n], then

P
(
| 1
n

∑
i

Vi −
1

n
E
∑
i

Vi| ≥ ε
)
≤ 2 exp

( −2nε2

1
n

∑n
i=1(bi − ai)2

)
.

Proof. Let Sn =
∑
i Vi. Then ∀t ≥ 0,

P (Sn − ESn ≥ ε) = P (et(Sn−ESn) ≥ etε)
≤ e−tεEet(Sn−ESn)

= e−tε
n∏
i=1

Eet(Vi−EVi)

≤ e−tε
n∏
i=1

exp(
1

8
t2(bi − ai)2)

2-2



The first inequality above follows from Markov’s inequality, and the second from Hoeffding’s Lemma. Now
setting t = 4ε∑n

i=1(bi−ai)2 , gives

P (Sn − ESn ≥ ε) ≤ exp
( −2ε2∑n

i=1(bi − ai)2

)
.

Finally, repeating the above steps for the other side of deviation, taking Union Bound and then plugging in
nε as ε gives the desired result.

2.2 Better Approach

How well does R̂n(π) estimate R(π) over all π ∈ Π?
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