ORIE 6745: Causality and Learning for Intelligent Decision Making August 30, 2017

Lecture 3-4
Lecturer: Nathan Kallus Scribe: Ashudeep Singh

1 Recap

We defined counterfactuals using the Potential Outcomes framework.

Y (z): The outcome (for a generic unit) that we would have observed if we applied the treatment z.

In general, we don’t observe all of these {Y (z) : z € Z}. We just observe a single factual outcome Y = Y (2)
corresponding to the actually applied treatment Z.

A few things to always keep in mind:

e Association # Causation

e Prediction # Decision

o Y|Z =z ;é Y (z): This means that the outcomes of the treated for a particular treatment may not
have the same distribution as the marginal distribution of the outcome for the treatment. For example,
if Z is sleeping while wearing shoes or not, Y is getting a headache in the morning, then Y(2) is the
distribution of outcomes on the entire population and this may not be the same as Y|Z = z i.e. the
distribution of headache for people wearing shoes while sleeping. This makes sense because alternative
explanations might exist such as drinking in the night causes people to wear shoes while sleeping and
also causes headache in the morning.

Later on in the semester, we will study more about creating statistical homogeneity with randomization and
controlled trials. Also, we’ll talk about unconfoundedness i.e. holding everything constant conditional on
observables.

For now, we will study the easy case of learning to decide with fully-observed counterfactuals. Observer
Yi(2)Vz € Z,Vi=1,...,n. We want to find a policy 7 : X — Z. Policy risk is defined as R(7) = E [V (7 (X)].
Empirical policy risk: R, (7) = LY (7(X3)).

In the last class, we proved the following:

Theorem 1 (Hoeffding Inequality). If V; € [a;, b;] are independent random variables for i € [n], then
1 1 —2ne?
PlI=) Vi-——-E)» Vijze] <2 7 :
( w2 VR ) o ( S (b ))
K3 7 n =

So, if |Y(2)| < ¢, then for a fixed m, ZRn)(ﬂ') is tightly concentrated near R(7). (Note: This can be
generalized for Y'(z) that are sub-gaussian (light-tails) instead of bounded.
However we actually want the following;
If we choose 7, € argmin, ¢y Ry (), then we want D(IT) = SUP e
for this is to use Empirical Risk minimization(ERM).

R, (m) — R(r)| to be small. One reason

R(#t,) < Ry(#,) + D(T0) (by definition)
< Ry (7*) + D(II) (for 7* € II by optimality of #,,)
< R(m*) 4+ 2D(1I) (by definition)
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Since this holds for any 7* € II, this also holds in particular for 7* € argmin, c; R(m). i.e. the best in-class

policy.

In this lecture, we will learn different ways to bound D(IT) with high probability in terms of the complexity

of the class II.

2 McDiarmid’s Inequality

Theorem 2 (McDiarmid’s Inequality). Let f: V™ — R be such that Vi, v, v, ..., Uy, V)

|f(U1,U2,-~-

77

,’Ui,...,'Un)—f('Ul,’UQ,...,'U,E,-..,'Un” Sci

(we call this bounded difference condition) Let Vi, Va, ...V, be independent random variables in V, then:

—2¢%
P(f(viy...,0n) —Ef(vi) =€) < exp(cl)

Xic

Proof. Construct a Doob Martingale, W; = E[f(V1.,,)|V1.4].

Notes:
L. Wo =Ef(Vi.p)
2. W, =Ef(Vi.)
3. E[W; — W;_1|Vii—1] =0

4. E [et(Wi*Wifl)Wu_l] < et*el/8 from Hoeffding’s Lemma.

Therefore, for t > 0,

P(W, — Wo) = P(e' W =W0) > ¢l

< e *E 'g(m—%)} (by Markov’s inequality)

— eftEE —H;L:let(Wifwi,l)}

=e¢ “E|E {H?Zlet(wi_w""l)wlm_l}} (iterated expectation)

IN A

IN

[ W 2 2
e R H;L:let(Wl Wl,l)et cn/8:|

(repeating this)

eften?iletQC?/S

= exp(—te + 2 Z c2/8)

Let t =

< —te+t2Y c}/8=
%

4e

—_— (obtained by first order optimality condition)

Z?:l /8

—2€

— O
E:’L:l 012
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Suppose |Y (z)| < ¢. Then:

sup | = 3V, (w(a,)) + Y<< ) —EY(n(@))]) = sup | = 3 ¥, (m(a)) + Y’<< 1) —EY (n(x))) |
mell n]#l mell nJ;ﬁz

®
<2 ®1- @

(sup, f(z) — sup, g(x) < sup, f(x) — g(x))
< itég @ - ‘ (Triangle Inequality)

= sup ~|Yi(n(X:) = v(n(z})] < 2¢/n

el N

Therefore, letting € = ¢1/2log(1/§)/n, McDiarmid’s inequality will give, with probability > 1 — 4,

D(II) < ED(II) + ¢+/2log(1/6) /n

Let us see what ED(II) is:

— [ sup |1 S 0n(x0) - ¥ (X0

=FE Tsrlelg - 0:(Yi(n(X;)) — Y (n(X])))

(Let o; = 1 be equal probability, independent Radamacher random variables)

Definition 3 (Radamacher Complexity). Given a set of point A C R™ be the Radamacher complexity of A is:

Z(A) = S Z sup — 2:0101z

se{ T 41}n a€AT

So,
ED(II) < 2K [2(Y(II))]

when V(1) = {(V1(7(X1)),..., Yu(m(X,)) : m € IT}.
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Again, if |Y(2)| < ¢, then |Z(Y(II) — 2(Y'(II))| (where Y is obtained by replacing X;,Y/(.) by X/,Y/(.)

(s K2

[2(Y(A) — 2 (Y'(1)))| =

B[ sup (3 3oy r(a)) + Zodipta(a) = sup (5 3 03y + ¥ (e |

11 I
€ Jj#i € 3751

™)
sgg@ ~sup .’ < E, sup |@ .|
L i) - w(w(X;)))\

O'

=E,; SuP |oi]

<

3\‘8’

So by McDiarmid’s, with probability > 1 — 6, EZ,, (V,,(I1)) < Zn(Vn (1)) + ¢4/ 210%171/6.

So far:
D) < 2,( (D) + 26/ 2822

Next: Interpret %, (Y(II)) as the complexity of the policy class IT

Theorem 4 (An extension of Ledoux-Talegrand Lipschitz comparison lemmma). Suppose Z C RY,
Fiz X;,Y;(),i=1,...,n
Suppose each Y;(.) is L-Lipschitz i.e. Y;(z) — Y;(2") < L||z — 2'||oo, for alli.
Let,
AP = {((7(X1))ks -+, (1(X))x) 7w € T}

Then,

R (Vo (1T <LZ%

Proof. Without loss of generality, L = 1 (otherwise, divide LHS by L).
We will show the following (stronger than the theorem):

E, sup — ZO’ZYH i) S Epeqo1,1ynxd sup ZZU““

mel 1t N k=

Suppose we have that for any S C R x Z and a 1-Lipchitz Q : Z — R,

E, sup (t € 0Q(z)) <E, sup (t+ » oxzx)
t,zES( ( )) t2€8 g @
Then:
10 ZUZYHX) - < <E,sup — ZZ%
rell 1 01,.,0n-1 |Eq,, [SUP mell tJrUnYn(Z)lalm_l]] xell N
t=% i) EnYS;(w(mi))

Let’s show @ now:
Fix any (t(tD, 24D (D) (D) € S,

Let s* =+1,k*=1,...d be
||zH) — 20| = S*(Z](le) (—1))
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RHS(¥) > Eo,. [ sup oy ke [t + Y Ukzkgk*]]
t,z€S &
> %Uok:kyék* [t(“*) AR Z U/czzs*}
ktk*

1 x x N
+ §Uo‘k:k7$k* [t(_s ) — Zk:S + Z okz,js ]
KAk

_ 1(,5(1) ) ) Z(1>|oo>
2

v

%(tm) (=) + %(t(m (D))

Taking suprema over t(&1) 2(F1)  we set the LHS of @ O

All together, with probability > 1 — 4,

2.1 Example 1: Supervised Learning

Supervised regression with bounded outcomes, Y;(z) = (L; — 2)? is 2c-Lipschitz z € R univariate. So:

2log (2/96)
D) <  Z,(A,(II))  +2¢y/ —

What’s this? Let’s see!

One kind of bound:
X[ <M, I=4{X— BTX : [1Bll2 < R}, then:

1 n
R (Apn(I)) =E, sup — oiBT X;
[[Bll2<R T ;

1
=E; sup 5T(E > oiXi)

l1B]l2<R
1
=E, [RHEUz'Uz‘Xin] (SUP|jg)1,<1 v = [[2]]2)
1
< R\/]EUHn > oiXill3 ( Parallelogram law: 3|[X1 + Xo||3 = || X1 + || X2|[?)
%
- vVnM?  RM
= Z |1 X3 <R B — 2 With high probability Vrell
pot n LD
N M 2log (2/6
So, whp, Z(7) < % (7) + QCRW + 2c %

Leads to Structural Risk Minimization: Choose 7, to minimize R, (z — 87x) + X||A]l2.
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3 VC-Dimension

Now, we will talk about another kind of bound: VC-Dimension.
Suppose Z = {£1}, e.g.:

e predict positive/negative classification

e give or don’t give treatment (actual decision)
Then Y (+) is 2¢-Lipschitz. What about £, (A, (I1))?
Lemma 5 (Massart’s lemma). Let A C [-M, M]"™. Then:

() < M1/ 2 1og |4l

Proof. Let A > 0. Then:

acA N

e %n (A) <E, eacp()\ sup — Zazal }

=E, | sup exp(A— Ua]
7 LacA Z o

<E, Z eap(— Z:Uiai)]

“acA

A
:ZH 1E0165L’p( O—’La’b)
acA

1 _
St (een(Can) + gean(2an)
2 n
ac A

< Yo N (cosh(z) < /)
acA

2772 /9, 2
< Z H?:16>\ M?/2n
acA

< Z 6/\2M2/2n
acA
— |A|e)\2M2/2n

= Zu(A) < logif” + 2—S etA = \/2nlog | A/M
< +/2log|A|/n.M.D

Definition 6. |A(II)| is called the growth function.

Definition 7. The VC-dimension of IT C [X — {—1,+1}], VC(II), is the largest number n s.t. Va1, za, ..., 2, €
X. We have:

|-An(H)| =2"

called “II shatters x1,...,z,” i.e. any labeling of £1 on the set of points can be described using the model
class II.

Proposition 8. Il = {z — sign(87x) : B € RP}, 2 € RP has VC-dimension p.
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Proof. To show VC(II) > p: find p points that we can shatter. Consider X; = (1,0,...,0),Xs =
0,1,...,0),...X, = (0,...,1).
Let z € {—1, 1} be given. Set §; = z;, we get

(m(z1),m(z2), ..., 7(xp)) = (%4, 2p)

To show VC(m) < p: show that we cannot shatter p + 1 points.
Let X1, Xa,..., Xp41 be given. They cannot be linearly independent. So IA #0,>°, \; X; =0

=3Nj: X =Y AX;
i#]
Let 8 € RP and suppose:
sign(BT X;) = sign(a;), Vi # j

= sign(BTX;) = sign(z aifTX;) = +1
i#]

3.1 Why VC dimension?
Lemma 9 (Sauer’s Lemma). If VC(II) < v, then |[A(TD)| < Y0, (3) < (22)°

- v

Till now, we have studied Radamacher Complexity, Lipschitz comparison, McDiarmid’s inequality, Mas-
sart’s Lemma and Sauer’s lemma.
For binary decision policies and bounded outcomes,

D(I1) = sup |%n () — %(7)|

mell

2logn

21log (2/9)/n + 4c VC(r)

n
Note: We can extend this to get:
e 1id of logn (Chaining argument and see Pollard reading)

e replace bounded requirement by subgaussian (lecture 2)

e deal with non-binary decision

4 Further

Usually counterfactuals are not observed, we only observed factuals Y = Y (z). We need to understand the
difference between Y |Z = z vs. Y (z). In the next class, we learn about controlled experiments.
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